AI Agents

AI Agents in Peru | Risk-Based Compliance, FinTech Growth, and Regulatory Certainty

A guide for implementing AI Agents in Peru. Navigate the comprehensive Law 31814, understand the risk-based regulatory framework, and capitalize on high-ROI use cases in Finance, Retail, and Mining.

Peru has secured its position as a regional leader by enacting Law 31814 (promulgated July 2023) and its subsequent regulations (September 2025). This legislation provides a clear, risk-based roadmap for AI adoption, focusing on transparency, human rights, and accountability—a structure reminiscent of the European Union's approach.

For implementation leaders, deploying AI Agents in Peru is now a compliance-first strategy. The regulatory certainty provided by this framework attracts investment but demands rigorous internal governance and careful risk classification of every deployed agent.

Strategic Imperative: The Compliance-First Advantage

The Peruvian AI Law (Law 31814) is the defining factor in the implementation landscape. It shifts the focus from simply what an agent can do to how it must operate.

Key strategic drivers for compliant implementation are:

  • Regulatory Certainty: The clear legal framework (prohibiting "unacceptable risk" and flagging "high-risk" uses) reduces legal ambiguity, making Peru an attractive, stable environment for long-term AI investment.

  • Ethics as a Differentiator: Compliant, transparent, and human-centered AI agents provide a competitive edge, especially when dealing with international partners and a consumer base increasingly aware of data rights.

  • Accelerated Digital Transformation: The law supports the development of the tech ecosystem, ensuring that agents are built upon principles of Non-discrimination, Transparency, Explainability, and Human Oversight.

High-Impact Deployment Use Cases: Compliance and Growth

AI Agent deployment in Peru is concentrated in high-value, high-data volume sectors that require enhanced risk management and efficiency:

Industry Sector

High-Impact Agent Use Case

Required Compliance Focus

Financial Services / Fintech

High-Risk Credit Scoring Agents: Automating loan and credit risk assessment, leveraging digital wallet data and digital payments.

High-Risk Classification: Requires mandatory human oversight, impact assessments, and proof of non-discrimination/fairness.

Mining & Energy

Predictive Geo-Location Agents: Analyzing geological, weather, and operational data to autonomously optimize drilling, extraction, and asset maintenance schedules.

Sustainability & Safety: Must adhere to sustainability principles (environmental impact) and robust safety standards for critical infrastructure.

Retail & E-commerce

Personalized Pricing Agents: Dynamically adjusting product pricing and discounts in real-time based on local demand, inventory, and customer segment.

Acceptable Risk (Generally): Requires transparency (labelling the use of AI) and strict adherence to Law 29733 (Personal Data Protection).

Public Sector

Fraud Detection Agents: Monitoring public bidding data and financial transactions to flag potential corruption or misuse of funds.

Transparency & Accountability: Decisions must be auditable, traceable, and subject to human review mechanisms.

The Implementation Challenge: Risk Classification and Auditing

The primary challenge in Peru is managing the strict compliance requirements of Law 31814, which mandates a structured, risk-based approach to AI deployment.

  • Mandatory Risk Classification: Implementation leaders must start by classifying every AI system into one of three buckets: Prohibited (e.g., social scoring), High-Risk (e.g., employment, credit), or Acceptable/Low-Risk. The compliance duties are far more rigorous for High-Risk systems.

  • Explainability (XAI) Requirement: For high-risk agents, it is no longer enough for the system to make a correct decision; the developer/implementer must provide a clear, technical explanation of how the decision was reached—a major data and logging challenge.

  • Phased Timelines: The regulations establish different compliance timelines for different sectors (e.g., Finance has 1 year, Manufacturing 3 years). Leaders must use these timelines strategically, prioritizing quick wins in low-risk areas while dedicating resources to the rigorous documentation required for high-risk applications.

AI Agent Landscape: Strategic Implementation Focus (Peru)

This table outlines the essential, compliance-driven tasks for implementation leaders operating under Peru's new law.

Implementation Focus

Strategic Question for Leaders

Risk of Failure if Ignored

Risk Classification

Has every agent been formally classified (Prohibited, High-Risk, Acceptable) per Law 31814?

Fines, injunctions, and immediate prohibition of the system's use.

Human Oversight

Do we have trained staff legally empowered to review, correct, or halt decisions made by High-Risk agents?

Non-compliance with mandatory human oversight principles.

Data Governance

Does the agent's data pipeline meet the strict requirements of Law 29733 (Data Protection), especially concerning data minimization?

Privacy violations; non-compliance with the National Data Protection Authority (ANPDP).

Traceability

Can we provide comprehensive documentation (logs, source data, models) for the agent's decisions for at least three years?

Inability to pass a regulatory audit; loss of public and legal trust.

Frequently Asked Questions (FAQ) for Implementers

Q: What does "Prohibited Risk" mean under Peruvian law?

It refers to AI systems that are deemed an unacceptable threat to fundamental rights. Examples include using subliminal manipulation techniques, social scoring systems that cause detriment, and certain real-time biometric identification in public spaces. These systems cannot be deployed.

Q: Is the cost of compliance worth the investment in Peru?

Yes. While compliance requires an upfront investment in governance and auditing, it provides regulatory certainty. This certainty de-risks the entire project, attracts international partners, and allows companies to confidently scale high-value agents in sectors (like finance and healthcare) that would otherwise be paralyzed by ambiguity.

Q: How does the new law impact my existing chatbots in the retail sector?

Standard customer service chatbots are typically classified as Acceptable/Low-Risk. However, you are still required to ensure transparency (users must be aware they are interacting with an AI) and full compliance with data privacy laws regarding the handling of any personal customer data.

Q: How should a business start its AI Agent journey in Peru today?

  1. Establish Governance: Form an internal Ethics Committee or designate a Compliance Officer responsible for AI.

  2. Inventory Systems: Rapidly audit all existing and planned AI deployments and formally classify their risk level (High, Acceptable).

  3. Start Low-Risk: Begin implementation in low-risk areas (e.g., internal data analysis, simple automation) to build internal expertise and a compliance track record before tackling high-risk, customer-facing agents.

¿Por qué elegirnos?

Creado por innovadores

Descubra cómo nuestras estrategias innovadoras, enfoque basado en datos y compromiso con los resultados nos distinguen de la competencia

Trabajo Manual

Entrega lenta y ciclos de desarrollo largos

Entrega lenta y ciclos de desarrollo largos

Limitado por las horas de trabajo

Limitado por las horas de trabajo

Altos costos laborales y generales

Altos costos laborales y generales

Difícil de adaptar, costoso de escalar

Difícil de adaptar, costoso de escalar

Trabajo Desconectado y Repetitivo

Trabajo Desconectado y Repetitivo

Quedarse atrás de los competidores

Quedarse atrás de los competidores

Método Groath

Decisiones inteligentes impulsadas por IA

Decisiones inteligentes impulsadas por IA

Flujos de trabajo automatizados 24/7

Flujos de trabajo automatizados 24/7

Escalable y Rentable

Escalable y Rentable

Procesamiento de Datos Instantáneo

Procesamiento de Datos Instantáneo

Integración de Sistemas Sin Problemas

Integración de Sistemas Sin Problemas

Producción consistente y confiable

Producción consistente y confiable

Nuestro Proceso

Nuestro Proceso

Nuestro proceso simple, inteligente y escalable

Diseñamos y construimos sistemas inteligentes usando un proceso claro, rápido e iterativo que funciona para startups y equipos establecidos.


Paso 1

Análisis Estratégico

Analizamos su producto, flujos de trabajo o idea para descubrir dónde los agentes de IA, la automatización o el desarrollo personalizado generarán el mayor impacto.

Analizando el flujo de trabajo actual.

Verificación del sistema

Verificación de proceso

Verificación de velocidad

Trabajo manual

Tarea repetitiva

Analizando el flujo de trabajo actual.

Verificación del sistema

Verificación de proceso

Verificación de velocidad

Trabajo manual

Tarea repetitiva

Paso 2

Desarrollo de IA

Nuestro equipo experto diseña y construye la lógica central, los modelos y las automatizaciones detrás de tus agentes de IA o aplicación personalizada.

  • class AutomationTrigger:
    def __init__(self, threshold):
    self.threshold = threshold
    self.status = "inactivo"

    def check_trigger(self, value):
    if value > self.threshold:
    self.status = "activo"
    return "¡Automatización activada!"
    else:
    return "No se ha tomado acción."
    def get_status(self):
    return f"Estado: {self.status}"

  • class AutomationTrigger:
    def __init__(self, threshold):
    self.threshold = threshold
    self.status = "inactivo"

    def check_trigger(self, value):
    if value > self.threshold:
    self.status = "activo"
    return "¡Automatización activada!"
    else:
    return "No se ha tomado acción."
    def get_status(self):
    return f"Estado: {self.status}"

  • class AutomationTrigger:
    def __init__(self, threshold):
    self.threshold = threshold
    self.status = "inactivo"

    def check_trigger(self, value):
    if value > self.threshold:
    self.status = "activo"
    return "¡Automatización activada!"
    else:
    return "No se ha tomado acción."
    def get_status(self):
    return f"Estado: {self.status}"

  • class AutomationTrigger:
    def __init__(self, threshold):
    self.threshold = threshold
    self.status = "inactivo"

    def check_trigger(self, value):
    if value > self.threshold:
    self.status = "activo"
    return "¡Automatización activada!"
    else:
    return "No se ha tomado acción."
    def get_status(self):
    return f"Estado: {self.status}"

Paso 3

Integración sin problemas

Integramos tu nueva aplicación o agentes de IA en tus herramientas y flujos de trabajo existentes, asegurando que todo funcione sin problemas con mínima interrupción.

Nuestra solución

Tu pila

Nuestra solución

Tu pila

Paso 4

Optimización continua

Ofrecemos optimización continua, mejorando su software y agentes con nuevas mejoras, mayor precisión y automatizaciones más inteligentes.

Sistema de chatbot

La eficiencia aumentará un 20%

Sistema de flujo de trabajo

Actualización disponible.

Sistema de ventas

Actualizado

Sistema de chatbot

La eficiencia aumentará un 20%

Sistema de flujo de trabajo

Actualización disponible.

Sistema de ventas

Actualizado

Preguntas frecuentes

Preguntas frecuentes

Tenemos las respuestas que buscas

Respuestas rápidas a sus preguntas sobre automatización con IA.

¿Qué puede construir realmente Groath?

¿Cómo sé qué construir o automatizar primero?

¿Necesito experiencia técnica para trabajar con Groath?

¿Puede cualquier negocio usar IA?

¿Qué tipo de soporte ofrecen?

¿Qué puede construir realmente Groath?

¿Cómo sé qué construir o automatizar primero?

¿Necesito experiencia técnica para trabajar con Groath?

¿Puede cualquier negocio usar IA?

¿Qué tipo de soporte ofrecen?

Lidera el camino utilizando IA en tu flujo de trabajo

Reserva una llamada hoy y comienza a automatizar

© Groath, Inc. 2025. Todos los derechos reservados.

© Groath, Inc. 2025. Todos los derechos reservados.